

widgetjs Documentation

This is the documentation of widgetjs [http://widgetjs.neoname.eu], the lightweight JavaScript widget framework.

Contents:

	Tutorial
	Presentation of widgetjs

	Quickstart

	A First Widget

	The Widget’s Root Element

	Appending Widgets Into The DOM

	Widget Events

	DOM Events

	Widget Life Cycle

	Putting It All Together

	Tools and Shortcuts

Tutorial

Presentation of widgetjs

widgetjs is a lightweight framework in JavaScript to separate web applications in multiple reusable components called
widgets [https://en.wikipedia.org/wiki/Widget_(GUI)].

widgetjs is not a full featured framework that can handle all aspects of a web application like network communications
or routing, there already exists good libraries for that. widgetjs only handles one aspect of web development:
separation of visual components into independant entities. So it provides only features to serve that goal, namely
widgets, lifecycle management and events.

Quickstart

The easiest way to start a widgetjs application is to checkout the sample application. Using git [https://git-scm.com/], do this:

git clone https://github.com/nicolas-van/widgetjs-starter.git -b 1.2.3

This sample application uses npm [https://www.npmjs.com/] and grunt [http://gruntjs.com/] to download the dependencies and launch a small web server. Type
these lines to download everything and start the server:

npm install
grunt

Then head your web browser to http://localhost:9000 and you will see the Hello World message outputed by
the application.

A Word About Class Inheritance

widgetjs allows to use ES6 class inheritance on its classes like this:

class MyWidget extends widgetjs.Widget {
 constructor() {
 super();
 }
}

We recommend to use this ES6 feature and to use Babel [https://babeljs.io/] when you need to support old browsers (which is what the sample
application does). But if you don’t want or can use Babel we also provide the extend() helper on all classes to
simplify inheritance:

var MyWidget = widgetjs.Widget.extend({
 constructor: function() {
 widgetjs.Widget.call(this);
 }
});

The provided examples below all use ES6 syntax, just know that everything is usable with extend() too.

A Word About Template Engines

widgetjs is a lightweight framework. As such, it doesn’t impose a particular template engine to render HTML. The
sample application uses Nunjucks [https://mozilla.github.io/nunjucks/] from Mozilla as it is a high quality and full featured template engine in JavaScript,
but you are free to replace it by any other template engine.

A First Widget

Take a look at the src/js/app.js file to have an example of your first widget:

myapp.Widget1 = class Widget1 extends widgetjs.Widget {
 constructor() {
 super();
 this.el.innerHTML = nunjucks.render('widget1.html');
 }
}

We can see that Widget1 is a simple subclass of widgetjs.Widget. It overrides the constructor to add some HTML
to the root element of the widget, this.el. In this example that HTML is rendered using Nunjucks (the
widget1.html file is located in the views folder).

In the index.html file we can see how this widget is instantiated and appended into the DOM:

var widget1 = new myapp.Widget1();
widget1.appendTo(document.body);

The widget is instantiated and then we call the appendTo() method by passing an element. appendTo() is one of
the multiple methods allowing to manipulate the location of widgets.

The Widget’s Root Element

When a widget is created, its root element is created with it. By default it’s always a <div> but it’s possible
to change that behavior.

You can access the root element of a widget by using the el accessor:

class MyWidget extends widgetjs.Widget {
 constructor() {
 super();
 this.el.innerHTML = "<p>Hi, I'm a widget!</p>";
 }
}
console.log(new MyWidget().el);
// Prints this element:
// <div>
// <p>Hi, I'm a widget!</p>
// </div>

The generation of the root element can be customized using the tagName, attributes and className attributes:

class MyWidget extends widgetjs.Widget {
 get tagName() { return "span"; }
 get className() { return "mywidget"; }
 get attributes() { return {"style": "display: block"}; }
 constructor() {
 super();
 this.el.innerHTML = "<p>Hi, I'm a widget!</p>";
 }
}
console.log(new MyWidget().el);
// Prints this element:
//
// <p>Hi, I'm a widget!</p>
//

Appending Widgets Into The DOM

By instanciating a widget you initialize it with its root element. But it’s still detached from the DOM. To insert it
into the DOM you can use one of the methods like appendTo():

class MyWidget extends widgetjs.Widget {
 constructor() {
 super();
 this.el.innerHTML = "<p>Hi, I'm a widget!</p>";
 }
}
new MyWidget().appendTo(document.body);

The appendTo() method appends the root element at the end of the provided element. Multiple other methods exist
to serve the same purpose, with some differences regarding the place where the root element will be inserted:

	appendTo()

	prependTo()

	insertAfter()

	insertBefore()

	replace()

	detach() (this one removes the widget from the DOM)

Warning

It is not recommended to directly alter the placement of the root element by using el. Doing so will
disable some of widgetjs’s features that will be explained later.

Widget Events

Events is one of the main features of widgetjs, and an incredibly useful tool in all modern UI libraries. Widget events
are separate from DOM events like click or submit. They are used to define your own custom events. Example:

class MyWidget extends Widget {
 doSomething() {
 // some code...
 this.trigger("someEvent");
 }
}

var x = new MyWidget();
x.on("someEvent", function() {
 console.log("an event occured");
});

x.doSomething();
// prints "an event occured"

on() is used to register event handlers, trigger() is used to trigger one and off() can be used to
unregister if you need to.

on() can also be used to register multiple events at once:

x.on({
 "someEvent": function() { ... },
 "someOtherEvent": function() { ... },
});

See also

If you want to use events outside of widgets you can use the widgetjs.EventDispatcher class.

DOM Events

While it is perfectly feasible to call addEventListener() on the root element accessed using el, widgetjs
provides an easier way to listen to those DOM events:

var x = new MyWidget();
x.on("dom:click", function() {
 console.log("the element was clicked");
});

When adding dom: at the beggining of the event type when calling on() you can proxy the DOM events through the
widget. It is also possible to listen to events on sub elements of the root element:

x.on("dom:click button", function(e) { // note that you can replace "button" by any CSS selector
 console.log("the button was clicked");
});

Doing so uses event bubbling. In this example the hypothetic button could be created after the call to on() without
problems. It can also be great for performances in multiple cases. Also note that, in the above example, you can get
the button element using e.bindedTarget.

Widget Life Cycle

Widget Destruction

We saw how to create widgets, now it is time to destroy them. To do so just call the destroy() method:

var x = new widgetjs.Widget();
x.appendTo(document.body);
x.destroy();
// the root element of x has been removed from the DOM

Once destroy() has been called on a widget it is considered a dead object. Its root element is detached and
all its event handlers are removed.

See also

Removing the event handlers when an widget is destroyed simplifies the task of the garbage collector as
events tend to generate a lot of circular references that make objects removal difficult.

It is also common to override the destroy() method to add some cleanup code. Remember: widgets are independant
visual components. Aside from displaying HTML code they could encapsulate any kind of behavior like animations, network
communication, etc… They are always susceptible to reserve ressources that should be freed or run background processes
that should be stopped.

Parent-Children Relationship

Widgets maintain a parent-children between themselves. You can see that relationship by using the parent and
children attributes.

class MyWidget1 extends widgetjs.Widget {
 constructor() {
 super();
 this.otherWidget = new MyWidget2().appendTo(this.el);
 }
}
class MyWidget2 extends widgetjs.Widget {
 // another widget
}
var x = new MyWidget1().appendTo(document.body);
console.log(x.otherWidget.parent === x);
// prints true
console.log(x.children[0] === x.otherWidget);
// prints true

Widgets maintain their parent-children automatically. You can also specify it explicitly by setting the parent
attribute.

When a widget is destroyed it will destroy its children recursively:

x.destroy();
console.log(x.destroyed);
// prints true
console.log(x.otherWidget.destroyed);
// prints true

Life cycle management using parent-children relationship is useful in big applications where a lot of widgets contain
other widgets. When relationship are correctly defined, whenever you destroy a widget all the widgets it created will
be destroyed. By extension all ressources that were directly or indirectly reserved by that widget will also be freed.

See also

If you want to use life cycle management outside of widgets you can use the widgetjs.LifeCycle class.

Putting It All Together

widgetjs is just a toolbox that gives some indications on how to define good components. It is still necessary to use
common sense and good practices to create scalable and maintainable applications.

Widgets should be considered as black boxes from the outside. A widget’s HTML should only be modified by that same
widget and be invisible from other components of the application.

As example, only a widget should register DOM events on one of its own elements. If you have a widget containing a
<form> element, never register the submit event from outside the widget by doing something like
theWidget.on("dom:submit form", ...). Here is a more correct way to do it:

class MyWidget extends widgetjs.Widget {
 constructor() {
 super();
 this.on("dom:submit form", this.formSubmit);
 this.el.innerHTML = nunjucks.render('myform.html');
 }
 formSubmit() {
 this.trigger("formCompleted");
 }
}

Here we forward the submit DOM event to a method that will trigger a formCompleted widget event. The difference
is that the submit DOM event is only a technical detail about how a HTML <form> works. The formCompleted
widget event is much more meaningful as a high level event: it identifies when the user has finished completing the
form. If later we want to add validation to our widget, add complex asynchronous operations or transform the widget into
something completely different like a wizard we can do so without modifying the external API of our widget. So any
piece of code in our application that already used the MyWidget class will not see the difference. To sum it:
MyWidget is a component that correctly encapsulates its behavior.

Tools and Shortcuts

The previous parts of this tutorial presented the main features of widgetjs, but there are still many shortcuts that
can be used to reduce the amount of code:

Ready

The typical helper to know if the browser finished the loading of the page, if you don’t plan to use jQuery:

widgetjs.ready(function() {
 // put some code
});

Standard Widget Events

Some events are automatically triggered by widgets:

	destroying will be triggered when the widget is destroyed.

	appendedToDom will be triggered when the widget is appended in the DOM and it not anymore in a detached state.
This is useful as example if you need to position elements using absolute positioning or start an animation.

	removedFromDom will be triggered if the widget is removed from the DOM, usually because the detach() method
has been called.

Index

 nav.xhtml

 Table of Contents

 		
 widgetjs Documentation

 		
 Tutorial

 		
 Presentation of widgetjs

 		
 Quickstart

 		
 A Word About Class Inheritance

 		
 A Word About Template Engines

 		
 A First Widget

 		
 The Widget’s Root Element

 		
 Appending Widgets Into The DOM

 		
 Widget Events

 		
 DOM Events

 		
 Widget Life Cycle

 		
 Widget Destruction

 		
 Parent-Children Relationship

 		
 Putting It All Together

 		
 Tools and Shortcuts

 		
 Ready

 		
 Standard Widget Events

_static/ajax-loader.gif

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

